Crystal structures and non-linear optical properties of cluster compounds $\left[\mathrm{MAu}_{2} \mathbf{S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right](\mathrm{M}=\mathrm{Mo}$ or W$) \dagger$

H e-gen Z heng, ${ }^{\text {a }}$ W ei J $\mathrm{i},{ }^{\mathrm{b}}$ M ichael L. K. L ow, ${ }^{\text {b }}$ G enta Sakane, ${ }^{\mathrm{c}}$ Takashi Shibahara ${ }^{\mathrm{c}}$ and X in-quan X in*,a
${ }^{\text {a }}$ State K ey L aboratory of C oordination C hemistry, C oordination C hemistry Institute, N anjing U niversity, N anjing, 210093, People's Republic of China
${ }^{\mathrm{b}}$ D epartment of Physics, N ational U niversity of Singapore, Singapore 119260,
Republic of Singapore
${ }^{\text {c }}$ D epartment of C hemistry, 0 kayama U niversity of Science, 0 kayama 700, J apan

The compounds $\left[\mathrm{M} \mathrm{Au}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{M}=\mathrm{Mol} 1\right.$ or W 2) were synthesized by reactions of $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{M} \mathrm{S} \mathrm{S}_{4}\right]$ ($\mathrm{M}=\mathrm{M} \mathrm{o}$ or W), $\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and AsPh_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. X -R ay crystallographic structure determinations show that the co-ordination of $\mathrm{Mo}(\mathrm{W})$ is slightly distorted from tetrahedral and those of the Au are distorted from trigonal planar. High non-linear susceptibilities of these gold-containing clusters were also observed for the first time. Z-Scan data measured with 532 nm nanosecond laser pulses showed that effective third-order non-linearities $\alpha_{2}=7.9 \times 10^{-5}$ and $13 \times 10^{-5} \mathrm{dm}^{3} \mathrm{~cm} \mathrm{~W}^{-1} \mathrm{~mol}^{-1}$ and $\mathrm{n}_{2}=-8.0 \times 10^{-10}$ and $19 \times 10^{-10} \mathrm{dm}^{3} \mathrm{~cm}^{2} \mathrm{~W}^{-1} \mathrm{~mol}^{-1}$, respectively, for a $0.64 \mathrm{mmol} \mathrm{dm}^{-3}$ solution of compound $\mathbf{1}$ and a $0.54 \mathrm{mmol} \mathrm{dm}^{-3}$ solution of $\mathbf{2}$.

The $\mathrm{Mo}(\mathrm{W})-\mathrm{Cu}(\mathrm{Ag})-\mathrm{S}$ cluster compounds have been studied extensively in the past two decades, because of their relevance to biological systems and catalytic processes. ${ }^{1,2}$ Recently, we have noticed that they also exhibit very interesting non-linear optical (NLO) properties. For example, strong NLO behaviour has been reported in nest-shaped clusters [$\left.\mathrm{NBu}^{\mathrm{n}}\right]_{2}\left[\mathrm{MOCu}_{3}-\right.$ $\left.\mathrm{OS}_{3}(\mathrm{NCS})_{3}\right]$ and $\left[\mathrm{NBu}_{4}{ }_{4}\right]_{2}\left[\mathrm{MoCu}_{3} \mathrm{OS}_{3} \mathrm{BrCl}_{2}\right]$, a supracageshaped cluster [$\left.\mathrm{NBu}^{\mathrm{n}}{ }_{4}\right]_{4}\left[\mathrm{M}_{\left.\mathrm{O}_{8} \mathrm{Cu}_{12} \mathrm{O}_{8} \mathrm{~S}_{24}\right] \text {, and a twin nest-shaped }}\right.$ cluster $\left[\mathrm{NEt}_{4}\right]_{4}\left[\mathrm{M} \mathrm{O}_{2} \mathrm{Cu}_{6} \mathrm{OS}_{6} \mathrm{Br}_{2} \mathrm{I}_{4}\right]^{3-5}$ Butterfly-shaped clusters $\left[\mathrm{M} \mathrm{Cu}_{2} \mathrm{OS}_{3}\left(\mathrm{PPh}_{3}\right)_{\mathrm{n}}\right]$ ($\mathrm{M}=\mathrm{Mo}$ or $\mathrm{W}, \mathrm{n}=3$ or 4) and a half-open cage-shaped cluster $\left[\mathrm{NEt}_{4}\right]_{3}\left[\mathrm{~W}(\mathrm{CuBr})_{3} \mathrm{OS}_{3}(\mu-\mathrm{Br})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ exhibit large NLO refraction. ${ }^{6,7}$ Cubane-like clusters $\left.\left[\mathrm{NBu}^{\mathrm{n}}\right]_{3}\right]^{-}$ [$\left.\mathrm{M} \mathrm{M}^{\prime}{ }_{3} \mathrm{~S}_{4} \mathrm{Br}(\mathrm{X})\right]\left(\mathrm{M}=\mathrm{Mo}\right.$ or $\mathrm{W}, \mathrm{M}^{\prime}=\mathrm{Cu}$ or $\mathrm{Ag}, \mathrm{X}=\mathrm{Cl}$ or I$)$ possess strong N LO absorption. ${ }^{8}$ A very large optical limiting effect has been observed in a hexagonal prism-shaped cluster $\left[\mathrm{M}_{2} \mathrm{Ag}_{4} \mathrm{~S}_{8}\left(\mathrm{PPh}_{3}\right)_{4}\right]$, which is about ten times larger than that observed in $\mathrm{C}_{60}{ }^{9}$ In order to explore this field further, we have synthesized a series of new $\mathrm{Mo}(\mathrm{W})$-Au-S cluster compounds. In this article we report the synthesis, characterization and NLO properties of gold-containing compounds with a linear structure, $\left.\left[\mathrm{MoAu} \mathrm{u}_{2} \mathrm{~S}_{4}(\mathrm{AsPh})_{3}\right)_{2}\right]$ and $\left[\mathrm{WAu}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$.

Experimental

M aterials

Compounds $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{MoS}_{4}\right]$ and $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{WS}_{4}\right]$ were prepared according to a literature method. ${ }^{10}$ Other chemicals were of A R grade and used without further purification.

Preparations

$\left[\mathrm{M} \mathrm{oAu}_{2} \mathbf{S}_{\mathbf{4}}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ 1. Triphenylarsine ($120.3 \mathrm{mg}, 0.3931$ mmol) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was slowly added to $\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($81 \mathrm{mg}, 0.1966 \mathrm{mmol}$) in absolute ethanol (5 cm^{3}). The light yellow solution was stirred for 2 h and refrigerated at $5^{\circ} \mathrm{C}$ overnight. The resulting colourless crystals were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ and $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{M} \mathrm{OS}_{4}\right](47.64 \mathrm{mg}$, 0.0983 mmol) was added. A fter stirring for 1 h the red-black solution was filtered and $\mathrm{Pri} \mathrm{OH}\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise to

[^0]the top of the solution. The red crystals were obtained several days later (Found: $\mathrm{C}, 35.15 ; \mathrm{H}, 2.4$. Calc. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~A}_{2} \mathrm{Au}_{2}-$ MoS_{4} : $\mathrm{C}, 35.15 ; \mathrm{H}, 2.45 \%$). IR (K Br pellet, cm^{-1}): $\mathrm{C}-\mathrm{H}$ in A sPh ${ }_{3}, 734.1 \mathrm{vs}, 689.3 \mathrm{vs} ; \mathrm{Au}-\mathrm{P}, 614.6 \mathrm{w} ; \mathrm{M} \mathrm{o}_{\mathrm{b}}$, 453.4vs.
$\left[W_{A u_{2}} \mathbf{S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ 2. The synthetic method was similar to that used for compound $\mathbf{1},\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{WS}_{4}\right]$ being used instead of [$\left.\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{M} \mathrm{OS}_{4}\right]$. Yellow crystals were obtained (Found: C, 32.75; $\mathrm{H}, 2.32$. Calc. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{As}_{2} \mathrm{Au}_{2} \mathrm{~S}_{4} \mathrm{~W}: \mathrm{C}, 32.8 ; \mathrm{H}, 2.3 \%$). IR (K Br pellet, cm^{-1}): $\mathrm{C}-\mathrm{H}$ in $\mathrm{AsPh}_{3}, 737.5 \mathrm{vs}, 688.3 \mathrm{vs} ; \mathrm{Au}-\mathrm{P}$, $519.5 w ; W-S_{b}, 477.3 v s, 442.2 v s, 407.0 w$.

X-R ay crystallography

A red crystal of compound $\mathbf{1}$ was mounted in a glass capillary. All measurements were made on a Rigaku AFC6S diffractometer with graphite-monochromated $\mathrm{M} \mathrm{o-K} \alpha$ radiation ($\lambda=0.7107 \AA$). The lattice parameters shown in Table 1 were refined using 21 reflections in the range $9.4<\theta<12.7^{\circ}$. The data collection with $\omega-2 \theta$ scans between 3 and 25° resulted in 6949 intensity values, 4591 with I $>1.50 \sigma$ (I) being used for the structure determination. The structure was solved by heavyatom Patterson methods ${ }^{11}$ and expanded using Fourier techniques. ${ }^{12}$ The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of full-matrix least-squares refinement converged with unweighted and weighted agreement factors $\mathrm{R}=0.0299$ and $R^{\prime}=0.0387$.
For compound 2, an orange crystal was mounted in a glass capillary for X-ray data collection. All measurements were made on a M ac Science M XC-18 diffractometer. The lattice parameters (Table 1) were refined using 39 reflections in the range $10.0<\theta<15.0^{\circ}$. The data collection with ω - 2θ scans between 3 and 30° resulted in 11491 intensity values, 7676 with I $>1.50 \sigma(I)$ being used for the structure determination. The structure was solved by direct methods ${ }^{13}$ and expanded using Fourier techniques. The refinement was based on F. A n empirical absorption correction using the program DIFABS ${ }^{14}$ was applied. The data were corrected for Lorentz-polarization effects, and the final $R=0.0638$ and $R^{\prime}=0.0859$. The function minimised was $\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, where $w=1 / \sigma^{2}\left(F_{\mathrm{o}}\right)$.
All calculations were performed using the TEXSAN ${ }^{15}$ crys-

Scheme 1

$$
\begin{aligned}
3\left[\mathrm{M} \mathrm{O}_{2} \mathrm{~S}_{2}\right]^{2-} & \rightleftharpoons \\
4\left[\mathrm{M} \mathrm{OS}_{3}\right]^{2-} \rightleftharpoons & \left.\mathrm{M} \mathrm{~S}_{3}\right]^{2-}+\left[\mathrm{M} \mathrm{~S} \mathrm{O}_{4}\right]^{2-}+\left[\mathrm{M} \mathrm{O}_{4}\right]^{2-} \\
& \text { Scheme 2- }
\end{aligned}
$$

tallographic software package. Selected bond distances and angles are given in Tables 2 and 3.
A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. C hem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/499.

Physical measurements

Infrared spectra were recorded on a Fourier Nicolet FT-10SX spectrophotometer with pressed K Br pellets, electronic spectra with a H itachi U-3410 spectrophotometer. C arbon and hydrogen analyses were performed on a PE-240C elemental analyser.

N on-linear optical measurements

TheN LO properties of compounds $\mathbf{1}$ and $\mathbf{2}$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{\mathbf{2}}$ were determined by using a standard Z -scan set up with a Q-switched, frequency-doubled Nd:YAG laser. The pulse repetition rate was 10 Hz . The details of the set-up can be found elsewhere. ${ }^{16}$ The solutions were contained in 1 mm thick quartz cells with concentrations of 6.4×10^{-4} and 5.4×10^{-4} $\mathrm{mol} \mathrm{dm}{ }^{-3}$ for compounds $\mathbf{1}$ and $\mathbf{2}$, respectively.

Results and Discussion

Synthesis

The compounds were synthesized from $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{M} \mathrm{S} \mathrm{S}_{4}\right](\mathrm{M}=\mathrm{M} \mathrm{o}$ or W), $\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and AsPh_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. When [$\left.\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{M} \mathrm{O}_{2} \mathrm{~S}_{2}\right]$ was used instead of $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{M} \mathrm{S}_{4}\right]$, the same compounds were obtained, as in Scheme 1. The transformation from $\left[\mathrm{M}_{2} \mathrm{~S}_{2}\right]^{2-}$ to $\left[\mathrm{M}_{4}\right]^{2-}$ may take place as in Scheme 2. Therefore, the $\left[\mathrm{M}_{4}\right]^{2-}$ anion reacts with $\left[\mathrm{Au}\left(\mathrm{AsPh}_{3}\right)\right]^{+}$to give the products. However, an interesting fact is that $\left[\mathrm{MOOS}_{3}-\right.$ $\left(\mathrm{AuPPh}_{3}\right)\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right\}$] was synthesized in poor yield by reaction of $\mathrm{Cs}_{2}\left[\mathrm{M} \mathrm{OOS}_{3}\right]$ and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]$. ${ }^{17}$

Structures of $\left[\mathrm{M} \mathrm{Au}_{2} \mathbf{S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ ($\mathrm{M}=\mathrm{Mol}$ or \mathbf{W} 2)

Figs. 1 and 2 show the crystal structures of compounds $\mathbf{1}$ and $\mathbf{2}$, Figs. 3 and 4 the packings of the clusters in the solid state The skeletons, consisting of one M, four $\mu-S$ and two Au atoms, show linear structures with crystallographic $C_{2 v}$ symmetry. The $\mathrm{Au}-\mathrm{Mo} \mathrm{O} \mathrm{Au}$ and $\mathrm{Au}-\mathrm{W}-\mathrm{Au}$ angles are 178.51(3) and $178.27(2)^{\circ}$, respectively. The M (M o or W) atom has essentially tetrahedral co-ordination and $\mathrm{M} \mathrm{S}_{4}{ }^{2-}$ acts as a tetradentate ligand co-ordinating to two Au atoms through its four μ-S atoms. Each Au atom is co-ordinated by two μ-S atoms and one AsPh_{3} ligand, forming a planar trigonal geometry.
The $\mathrm{M}^{1} \mathrm{~S}^{2} A u^{1}$ and $\mathrm{M}^{3} \mathrm{~S}^{4} A u^{2}(\mathrm{M}=\mathrm{M}$ o or W$)$ cores in compounds $\mathbf{1}$ and $\mathbf{2}$ are planar to within 0.0056 (0.0083) and 0.0125 (0.0136) \AA, respectively. Their dihedral angle is $89.65(89.73)^{\circ}$, which means that they are essentially perpendicular to each other.
There are two types of structures in related linear compounds as depicted in Scheme 3; the main bond lengths are listed in Table 4, which reveals several structural trends. First, in all linear-shaped compounds $\mathrm{M} \mathrm{S}_{2} \mathrm{M}^{\prime}{ }_{2}\left(\mathrm{M}=\mathrm{Mo}\right.$ or $\mathrm{W} ; \mathrm{M}^{\prime}=\mathrm{Cu}$,

Fig. 1 Crystal structure of $\left[\mathrm{M} \mathrm{oAu}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$

Fig. 2 Crystal structure of $\left[\mathrm{WAu}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$

Fig. 3 Packing of $\left[\mathrm{M} \mathrm{OAu}_{2} \mathrm{~S}_{4}(\mathrm{AsPh})_{2}\right.$] in the solid state
Ag or Au), each Au atom in compounds 1, 2, $\mathbf{6}$ and $\mathbf{1 0}$ is in a trigonal-planar co-ordination; one $\mathrm{Cu}(\mathrm{Ag})$ atom in 3-5 and 7-9 is tetrahedrally co-ordinated and the other is trigonally co-ordinated. However, the co-ordination modes of two Au atoms in the nest-shaped compound $\left[\mathrm{M} \mathrm{OOS}_{3}\left(\mathrm{AuPPh}_{3}\right)\{\mathrm{Au}-\right.$ $\left.\left.\left(\mathrm{PPh}_{3}\right)_{2}\right\}\right]$ are the same as those observed in linear-shaped $\mathrm{Mo}(\mathrm{W})-\mathrm{Cu}(\mathrm{Ag})-\mathrm{S}$ cluster compounds. Secondly, the $\mathrm{M}-\mathrm{S}$ bond lengths of four gold-containing linear compounds are similar to each other. O wing to the influences of the ligands, the Mo-Au, W-Au and Au-S bond lengths are different. The Au-A s bond lengths are, of course, longer than corresponding Au-P distances. The explanation for this fact is that the covalent radius ($1.21 \AA$) of $A s$ is longer than that ($1.10 \AA$) of P. Thirdly, the Au-P bond length [2.272(2) \AA for 6] trigonally coordinated in $\mathrm{Mo} \mathrm{o}^{\prime} \mathrm{M}^{\prime} \mathrm{L}\left(\mathrm{M}^{\prime}=\mathrm{Cu}, \mathrm{Ag}\right.$ or Au) compounds 3, 4,

Fig. 4 Packing of $\left[\mathrm{WAu}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ in the solid state

Table 1 Crystal data and experimental parameters for complexes 1 and 2*

	1	2
Formula	$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{As}_{2} \mathrm{Au}_{2} \mathrm{M} \mathrm{OS}_{4}$	$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~A} \mathrm{~S}_{2} \mathrm{Au}_{2} \mathrm{~S}_{4} \mathrm{~W}$
M	1230.59	1318.50
Crystal size/mm	$0.41 \times 0.20 \times 0.16$	$0.50 \times 0.41 \times 0.30$
a/Å	9.580(4)	9.572(2)
b/Å	10.753(4)	10.803(2)
c/Å	19.838(8)	19.816(4)
$\alpha /{ }^{\circ}$	88.12(4)	88.15(1)
$\beta /{ }^{\circ}$	80.20(4)	80.30(2)
$\gamma /{ }^{\circ}$	67.39(3)	67.52(2)
U / \AA^{3}	1857(1)	1865.2(7)
T/K	290.2	295.2
D $/ \mathrm{g} \mathrm{cm}^{-3}$	2.200	2.348
F (000)	1152.00	1216.00
$\mu\left(\mathrm{M} \mathrm{o-K} \alpha\right.$)/cm cm^{-1}	102.55	129.64
$2 \theta_{\text {max }} /{ }^{\circ}$	50.0	60.0
Scan speed/ ${ }^{\circ} \mathrm{min}^{-1}$	2.0	8.0
N o. observations $[1>1.5 \sigma(1)]$	4591	7676
R	0.0299	0.0638
R'	0.0387	0.0859
G oodness of fit indicator	1.108	0.935
M aximum, minimum peaks in final difference map/e \AA^{-3}	0.96, -0.71	6.85, -5.29

* D etails in common: triclinic, space group $P \overline{1} ; Z=2 ; 407$ variables; maximum shift in final cycle 0.00 .
and 6 is between the Cu-P [2.210(5) \AA] and Ag-P distances [$2.380(4) \AA$] , though atom covalent radii vary as $\mathrm{Au}>\mathrm{Ag}>\mathrm{Cu}$, showing that the Au-P bond is stronger than the $\mathrm{Cu}-\mathrm{P}$ and A $g-P$. The same trend is observed in $W-M^{\prime}-S$ compounds 7,8 and 10. Fourthly, $\mathrm{M}^{\prime}-\mathrm{P}, \mathrm{M}^{\prime}-\mathrm{S}$ and $\mathrm{M}-\mathrm{M}^{\prime}$ bond lengths in tetrahedral co-ordination are longer than those in trigonal coordination in compounds 3-5 and 7-9. H owever, the opposite trend is found in $\mathrm{M}-\mathrm{S}$ bond distances.

NLO properties of $\left[\mathrm{M} \mathrm{Au}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ (M $=\mathrm{Mol}$ or W 2)

The similarity in the structures of the two compounds should lead to similar UV/VIS spectra, which is confirmed by Fig. 5. Thered shift in the spectrum of compound $\mathbf{1}$ is expected since it contains one M o atom instead of oneW atom. The first absorption peaks are located at $500(2.48)$ and $410 \mathrm{~nm}(3.02 \mathrm{eV})$ for compounds 1 and 2, respectively. Their Z-scan results are shown in Fig. 6, where the filled and open circles were measured

Scheme 3

Table 2 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for compound 1

$\mathrm{Au}(1)-\mathrm{Mo}$	2.7837(7)	$\mathrm{Au}(1)-\mathrm{As}(1)$	2.3745(8)
$\mathrm{Au}(1)-\mathrm{S}(1)$	2.395(2)	$A u(1)-S(2)$	2.392(2)
$\mathrm{Au}(2)-\mathrm{Mo}$	2.7690 (7)	$\mathrm{Au}(2)-\mathrm{As}(2)$	$2.3715(8)$
$\mathrm{Au}(2)-\mathrm{S}(3)$	2.378(2)	$\mathrm{Au}(2)-\mathrm{S}(4)$	2.396(2)
$\mathrm{M} \mathrm{O-S}(1)$	2.216(2)	Mo -S(2)	2.213(2)
M o-S(3)	2.214(2)	M O-S(4)	2.213(2)
M o-Au(1)-A s(1)	172.74(3)	M o-Au(1)-S(1)	49.97(5)
$\mathrm{M} 0-\mathrm{Au}(1)-\mathrm{S}(2)$	49.93(5)	$\mathrm{As}(1)-\mathrm{Au}(1)-\mathrm{S}(1)$	126.55(6)
$\mathrm{As}(1)-\mathrm{Au}(1)-\mathrm{S}(2)$	133.10(6)	S(1)-Au(1)-S(2)	99.89(7)
$\mathrm{M} \mathrm{o-Au(2)-A} \mathrm{s(2)}$	174.86(3)	$\mathrm{M} 0-\mathrm{Au}(2)-\mathrm{S}(3)$	50.26(6)
$\mathrm{M} 0-\mathrm{Au}(2)-\mathrm{S}(4)$	50.10(5)	$\mathrm{As}(2)-\mathrm{Au}(2)-\mathrm{S}(3)$	134.31(6)
$\mathrm{As}(2)-\mathrm{Au}(2)-\mathrm{S}(4)$	125.23(6)	S(3)-Au(2)-S(4)	100.36(8)
$\mathrm{Au}(1)-\mathrm{M} \mathrm{o-Au(2)}$	178.51(3)	$\mathrm{Au}(1)-\mathrm{M} \mathrm{o-S(1)}$	55.86(6)
$\mathrm{Au}(1)-\mathrm{M} \mathrm{O-S}(2)$	55.80(6)	$\mathrm{Au}(1)-\mathrm{Mo} 0-\mathrm{S}(3)$	123.44(7)
$\mathrm{Au}(1)-\mathrm{M} \mathrm{O-S}(4)$	124.70(6)	$\mathrm{Au}(2)-\mathrm{M} \mathrm{o-S(1)}$	125.34(6)
$\mathrm{Au}(2)-\mathrm{M} \mathrm{O-S}(2)$	123.01(7)	$\mathrm{Au}(2)-\mathrm{Mo}-\mathrm{S}(3)$	55.68(6)
$\mathrm{Au}(2)-\mathrm{M} \mathrm{O-S}(4)$	56.18(6)	$\mathrm{S}(1)-\mathrm{M} \mathrm{O-S}(2)$	111.65(9)
$\mathrm{S}(1)-\mathrm{M} \mathrm{O}-\mathrm{S}(3)$	109.07(10)	$\mathrm{S}(1)-\mathrm{M} \mathrm{O}-\mathrm{S}(4)$	108.24(9)
$\mathrm{S}(2)-\mathrm{M} \mathrm{O}-\mathrm{S}(3)$	108.13(10)	$\mathrm{S}(2)-\mathrm{Mo}-\mathrm{S}(4)$	107.92(10)
$\mathrm{S}(3)-\mathrm{M} \mathrm{O}-\mathrm{S}(4)$	111.86(9)	$\mathrm{Au}(1)-\mathrm{S}(1)-\mathrm{Mo}$	74.15(7)
$\mathrm{Au}(1)-\mathrm{S}(2)-\mathrm{Mo}$	74.28(7)	$\mathrm{Au}(2)-\mathrm{S}(3)-\mathrm{Mo}$	74.06(7)
$\mathrm{Au}(2)-\mathrm{S}(4)-\mathrm{M} \mathrm{o}$	73.72(7)		

Au(1)-W	2.8103(4)	$\mathrm{Au}(1)-\mathrm{As}(1)$	2.3733(9)
$\mathrm{A} u(1)-\mathrm{S}(1)$	2.427 (3)	$\mathrm{Au}(1)-\mathrm{S}(2)$	2.406(3)
$\mathrm{Au}(2)-\mathrm{W}$	2.7951(4)	$\mathrm{Au}(2)-\mathrm{As}(2)$	2.3698(9)
$\mathrm{Au}(2)-\mathrm{S}(3)$	2.400(3)	$\mathrm{Au}(2)-\mathrm{S}(4)$	2.418(3)
W-S(1)	2.213(2)	W-S(2)	2.217(2)
W-S(3)	2.213(3)	W-S(4)	2.218(2)
W-Au(1)-As(1)	172.38(3)	W-Au(1)-S(1)	49.32(6)
W-Au(1)-S(2)	49.55(6)	$\mathrm{As}(1)-\mathrm{Au}(1)-\mathrm{S}(1)$	126.65(6)
$\mathrm{As}(1)-\mathrm{Au}(1)-\mathrm{S}(1)$	134.02(6)	$\mathrm{S}(1)-\mathrm{Au}(1)-\mathrm{S}(2)$	98.86(8)
W-Au(2)-As(2)	174.63(3)	W-Au(2)-S(3)	49.72(6)
W-Au(2)-S(4)	49.71(6)	$\mathrm{As}(2)-\mathrm{Au}(2)-\mathrm{S}(3)$	135.12(7)
$\mathrm{As}(2)-\mathrm{Au}(2)-\mathrm{S}(4)$	125.34(6)	$\mathrm{S}(3)-\mathrm{Au}(2)-\mathrm{S}(4)$	99.42(9)
$\mathrm{Au}(1)-\mathrm{W}-\mathrm{Au}(2)$	178.27(2)	Au(1)-W-S(1)	56.28(7)
$\mathrm{Au}(1)-\mathrm{W}-\mathrm{S}(2)$	55.70(7)	Au(1)-W-S(3)	123.15(7)
$\mathrm{Au}(1)-\mathrm{W}-\mathrm{S}(4)$	124.77(7)	$\mathrm{Au}(2)-\mathrm{W}-\mathrm{S}(1)$	125.11(7)
$\mathrm{Au}(2)-\mathrm{W}-\mathrm{S}(2)$	122.93(7)	Au(2)-W-S(3)	55.81(7)
Au(2)-W-S(4)	56.27(6)	$\mathrm{S}(1)-\mathrm{W}-\mathrm{S}(2)$	111.96(10)
$\mathrm{S}(1)-\mathrm{W}-\mathrm{S}(3)$	108.6(1)	$\mathrm{S}(1)-\mathrm{W}-\mathrm{S}(4)$	108.14(10)
$\mathrm{S}(2)-\mathrm{W}-\mathrm{S}(3)$	108.3(1)	$\mathrm{S}(2)-\mathrm{W}-\mathrm{S}(4)$	107.9(1)
S(3)-W-S(4)	112.08(10)	Au(1)-S(1)-W	74.40(7)
Au(1)-S(2)-W	74.75(7)	$\mathrm{Au}(2)-\mathrm{S}(3)-\mathrm{W}$	74.47(8)
Au(2)-S(4)-W	74.02(7)		

with and without the aperture, respectively. To obtain the NLO parameters we employed a Z-scan theory which considers effective non-linearities of third-order nature only: $\alpha=\alpha_{0}+\alpha_{2}$ |

Table 4 Comparison of main bond distances $(\AA)^{\text {a }}$

Compound	M $-S^{\text {b }}$	M $-\mathrm{M}^{\text {b }}$	$M^{\prime}-S^{\text {b }}$	M '-L	Ref.
$1\left[\mathrm{M} \mathrm{oAu} \mathrm{S}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$	2.214(2)	$2.7764(7)$	2.390(2)	2.373(8)	This work 18
$3\left[\mathrm{M} \mathrm{OCu} 2 \mathrm{~S}_{4}\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$2.218(5)$	2.642 (3)	2.220 (5)	2.210 (5)	
	2.198(5)*	2.775(2)*	2.313(5)*	2.303(5)*	
$4\left[\mathrm{M} \mathrm{oA} \mathrm{g} 2 \mathrm{~S}_{4}\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2.215(5)	2.860(2)	2.459(5)	2.380(4)	19
	2.195(5)*	3.030(2)*	2.572(5)*	2.471(4)*	
$5\left[\mathrm{NEt}_{4}\right]\left[\mathrm{M} \mathrm{oAg}(\mathrm{CuCN}) \mathrm{S}_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	2.202(6)	2.622(3)	2.209(7)	1.87(2)	20
	2.189(5)*	3.075(2)*	2.584(5)*	2.484(5)*	
$6\left[\mathrm{M} \mathrm{OAu}_{2} \mathrm{~S}_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	2.214(2)	2.810(1)	2.405(2)	2.272(2)	17 This work
$2\left[\mathrm{WAu}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$	2.215(2)	2.8027(4)	2.413(3)	2.372(9)	
$7\left[\mathrm{WCu}_{2} \mathrm{~S}_{4}\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2.224(8)	2.670(3)	2.232(9)	2.209(8)	19
	2.204(3)*	2.809(3)*	2.333(3)*	2.307(8)*	
$8\left[\mathrm{WA} \mathrm{g}_{2} \mathrm{~S}_{4}\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2.219(1)	2.886(2)	2.476 (6)	$3.362(5)$	19
	2.195(5)*	3.056(2)*	2.579(5)*	2.460(1)*	
$9\left[\mathrm{NEt}_{4}\right]\left[\mathrm{WA} \mathrm{g}\left(\mathrm{CuCN} \mathrm{S}_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]\right.$	$2.202(5)$	$2.638(3)$	2.219(6)	1.82(2)	21
	2.189(5)*	3.099(2)*	2.596(5)*	2.479(5)*	
$10\left[\mathrm{WAu}_{2} \mathrm{~S}_{4}\left(\mathrm{PM} \mathrm{ePh}_{2}\right)_{2}\right]$	2.219(3)	2.841(1)	2.429(3)	2.268(3)	22
$11\left[\mathrm{M} \mathrm{OOS}_{3}\left(\mathrm{AuPPh}_{3}\right)\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right\}\right]$	2.261(2)	2.838(1)	2.419(2)	2.277(2)	17
	2.241(2)*	3.133(1)*	2.644(2)*	2.325(2)*	

${ }^{a} M=M$ o or $W ; M^{\prime}=C u, A g$ or $A u .{ }^{b}$ Average values. * The starred bond lengths are those when the Cu or Ag has tetrahedral co-ordination and the S or P atom is bonded to the Cu or Ag .

Fig. 5 Electronic spectra of $\left[\mathrm{M} \mathrm{oAu}_{2} \mathrm{~S}_{4}\left(\mathrm{~A} \mathrm{sPh}_{3}\right)_{2}\right]\left(9.6 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ $(--)$ and $\left[\mathrm{WAu}_{2} \mathrm{~S}_{4}\left(\mathrm{~A} \mathrm{sPh}_{3}\right)_{2}\right]\left(4.2 \times 10^{-4} \mathrm{~mol}^{2} \mathrm{dm}^{-3}\right)(--)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ Optical path 1 cm
and $n=n_{0}+n_{2}$ I, where α, α_{0} and α_{2} are the total, linear and non-linear absorption coefficients, n, n_{0} and n_{2} the total, linear and non-linear refractive indices and I is the light irradiance The details of the theory can be found elsewhere ${ }^{16}$ The good fits between the theory and the Z-scan data suggest that the observed non-linearities can be expressed effectively by thirdorder susceptibilities. The values of α_{2} and n_{2} extracted from the best fits are listed in Table 5. The modulus of the third-order molecular susceptibility was calculated from equation (1) where

$$
\begin{equation*}
|\gamma|=\frac{1}{N F^{4}} \sqrt{\left(\frac{9 \times 10^{8} \varepsilon_{0} n_{0}^{2} c^{2} \alpha_{2}}{4 \pi \omega}\right)^{2}+\left(\frac{c n_{0}^{2} n_{2}}{80 \pi^{2}}\right)^{2}} \tag{1}
\end{equation*}
$$

ε_{0} and c are the permittivity and the speed of light in a vacuum, respectively, ω is the angular frequency of the light, N the compound concentration, and F^{4} the local Lorentz field. In this expression all the units are SI except that N is in cm^{-3} and $|\gamma|$ is in esu. A ssuming that $\mathrm{F}^{4}=3$, we calculate that $|\gamma|=3.0 \times 10^{-29}$ and 6.5×10^{-29} esu (esu $=7.162 \times 10^{13} \mathrm{~m}^{5} \mathrm{v}^{-2}$) for compounds 1 and $\mathbf{2}$, respectively. N ote that such a large γ value is measured in the transparent region for compound $\mathbf{2}$, and is several orders of magnitude greater than those in well known NLO materials in the transparent part of their spectra (for example: 5.6×10^{-35}

Fig. 6 Z Scans of $\left[\mathrm{M} \mathrm{OAu}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(6.4 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and $\left[\mathrm{WAu}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(5.4 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with $532 \mathrm{~nm}, 7 \mathrm{~ns}$ laser pulses. Optical path 1 mm . Incident energy of pulses 20 mJ . Transmittance of the aperture 0.34. The experimental data were measured with (\circlearrowleft) and without (O) the aperture, respectively. The solid curves represent fits based on Z-scan theory. The Z scans of $\left[\mathrm{WAu}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ have been vertically displaced by 0.4 for clarity
8.6×10^{-34} esu for Group 10 metal alkynyl polymers at 1064 $\mathrm{nm},^{23,24} 1 \times 10^{-32}-1 \times 10^{-31}$ esu for metallophthalocyanines at $1064 \mathrm{~nm}^{25}$ and 7.5×10^{-34} esu for C_{60} at 1910 nm). ${ }^{26}$ It is also interesting to compare these two new compounds with clusters that we have previously reported. Table 5 shows that compound $\mathbf{2}$ compares favourably with all the clusters in terms of figures of merit, α_{2} / α_{0} and n_{2} / α_{0}.
It should be emphasized that the Z scans reported here could not reveal the origins of the observed non-linearities. Excitedstate absorption and non-linear scattering are possible for the measured absorptive non-linearity. The change in the sign of the measured refractive non-linearity may give a hint as to the cause of the non-linear refraction. The signs of refractive nonlinearities for all the clusters, listed in Table 5, show that n_{2} alters from positive to negative as the ratio of the photon energy ($h \omega$) to that of the first absorption peak ($h \omega_{0}$) approaches $1: 1$. The turning point is located at around ho/ $h \omega_{0} \approx 0.8: 1$, which is consistent with a recently developed theory on bound-electronic effects. ${ }^{27}$

Table 5 NLO Parameters for clusters measured at photon energy $h \omega=2.33 \mathrm{eV}$

Cluster	$\mathrm{h} \omega_{0} / \mathrm{eV}$	$h \omega / h \omega_{0}$	$\begin{aligned} & 10^{-3} \\ & \alpha_{0} / \mathrm{dm}^{3} \mathrm{~cm}^{-1} \\ & \mathrm{~mol}^{-1} \end{aligned}$	$\begin{aligned} & 10^{5} \\ & \alpha_{2} / \mathrm{dm}^{3} \mathrm{~cm} \\ & \mathrm{~W}^{-1} \mathrm{~mol}^{-1} \end{aligned}$	$\begin{aligned} & 10^{10} \\ & \mathrm{n}_{2} / \mathrm{dm}^{3} \mathrm{~cm}^{2} \\ & \mathrm{~W}^{-1} \mathrm{~mol}^{-1} \end{aligned}$	$\begin{aligned} & 10^{8} \\ & \alpha_{2} \alpha_{0}-1 / \mathrm{cm}^{2} \\ & \mathrm{~W}^{-1} \end{aligned}$	$\begin{aligned} & 10^{3} \\ & \left\|n_{2} / \alpha_{0}\right\| / \mathrm{cm}^{3} \\ & W^{-1} \end{aligned}$
$\left[\mathrm{WCu}_{2} \mathrm{OS}_{3}\left(\mathrm{PPh}_{3}\right)_{4}\right]^{\text {a }}$	4.85	0.48	2.5	≈ 0	6.7	≈ 0	2.7
$\left[\mathrm{MoCu} 2 \mathrm{OS}_{3}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{\text {a }}$	4.80	0.49	15	35	68	2.3	4.5
$\left[\mathrm{M} \mathrm{O}_{2} \mathrm{~A}_{4} \mathrm{~S}_{8}\left(\mathrm{PPh}_{3}\right)_{4}\right]^{\mathrm{b}}$	4.75	0.49	6.4	100	120	16	19
$\left[\mathrm{NEt}_{4}\right]_{3}\left[\mathrm{WOS}_{3}(\mathrm{CuBr})_{3}(\mu-\mathrm{Br})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}^{\mathrm{c}}$	3.55	0.66	5.3	6.6	12	1.2	2.3
$\left[\mathrm{WAu}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]^{\text {d }}$	3.02	0.77	0.44	13	19	29	42
$\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{M} \mathrm{OCu}_{3} \mathrm{OS}_{3}(\mathrm{NCS})_{3}\right]^{\mathrm{e}}$	2.50	0.93	1.2	0.18	-1.7	0.15	1.4
$\left[\mathrm{MoAu} \mathrm{V}_{2} \mathrm{~S}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]^{\text {d }}$	2.48	0.94	4.5	7.9	-8.0	1.8	1.8
[$\left.\mathrm{NBu}_{4}\right]_{4}\left[\mathrm{M} \mathrm{O}_{8} \mathrm{Cu}_{12} \mathrm{O}_{8} \mathrm{~S}_{24}\right]^{\dagger}$	2.43	0.96	7.5	28	-23	3.7	3.1

${ }^{a}$ Ref. 5. ${ }^{\mathrm{b}}$ Ref. 9. ${ }^{\mathrm{c}}$ Ref. 7. ${ }^{\mathrm{d}}$ This work. ${ }^{\mathrm{e}} \mathrm{R}$ ef. 3. ${ }^{\mathrm{f}} \mathrm{R}$ ef. 4.

R eferences

1 R. H. H olm, Chem. Soc. Rev., 1981, 10, 455.
2 E. D. Simhon, N. C. Baenziger, M. K anatzidis, M . D raganjac and D. Coucouvanis, J. A m. C hem. Soc., 1981, 103, 1218

3 S. Shi, W. Ji, W. Xie, T. C. Chong, H. C. Zeng, J. P. Lang and X. Q X in, M ater. Chem. Phys., 1995, 39, 298; W. Ji, P. Ge, W. X ie, S. H Tang and S. Shi, J. Lumin., 1996, 66/67, 115; H. W. Hou, X. R. Ye, X. Q. Xin, J. Liu, M. Q. Chen and S. Shi, Chem. M ater., 1995, 7 472.

4 S. Shi, W. Ji and X. Q. Xin, J. Phys. Chem., 1995, 99, 894; W. Ji W. X ie, S. H. Tang and S. Shi, M ater. Chem. Phys., 1995, 43, 45

5 H. W. Hou, X. Q. X in, J. Liu, M. Q. Chen and S. Shi, J. Chem. Soc., D alton Trans., 1994, 3211.
6 Z. R. Chen, H. W. H ou, X. Q. X in, B. Yu and S. Shi, J. Chem. Phys., 1995, 99, 8717.
7 S. Shi, H. W. H ou and X. Q. X in, J. Phys. Chem., 1995, 99, 4050.
8 S. Shi, W. Ji, S. H.Tang, J. P. L ang and X. Q. X in, J. A m. Chem. Soc. 1994, 116, 3615; S. Shi, W. Ji, J. P. Lang and X. Q. Xin, J. Phys. Chem., 1994, 98, 3570; W. Ji, H. J. Du, S. H. Tang and S. Shi, J. O pt. Soc. Am. B, 1996, 12, 876.
9 W. Ji, S. Shi, H. J. Du, P. Ge, S. W. Tang and X. Q. Xin, J. Phys. Chem., 1995, 99, 17297.
10 J. W. M cD onald, G. D. Friesen, L. D. Rosenhein and W. E. N ewton, I norg. C him. A cta, 1983, 72, 205.
11 PATTY, P. T. Beurskens, G. A dmiraal, G. Beurskens, W. P. Bosman S. Garcia-G randa, R. O. G ould, J. M. M. Smits and C. Smykalla, The DIRDIF program system, Technical Report of the Crystallography L aboratory, U niversity of N ijmegen, 1992.
12 P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. Gelder, R. Israel and J. M. M. Smits, The DIRDIF 94 program system, Technical Report of the Crystallography Laboratory, U ni versity of Nijmegen, 1994.
13 SH ELX S 86, G. M. Sheldrick, in C rystallographic Computing 3, eds G. M. Sheldrick, C. K ruger and R. Goddard, Oxford U niversity Press, 1985, pp. 175-189.

14 DIFABS, N. Walker and D. Stuart, A cta C rystallogr., Sect. A , 1983, 39, 158.
15 TEX SA N, Crystal Structure A nalysis Package, M olecular Structure Corporation, H ouston, TX, 1995.
16 H. Hou, B. Liang, X. Xin, K. Yu, P. Ge, W. Ji and S. Shi, J. Chem. Soc., Faraday Trans., 1996, 92, 2343
17 J. M. Charnock, S. Bristow, J. R. Nicholson, C. D. Garner and W. Clegg, J. Chem. Soc., D alton Trans., 1987, 303.

18 A. M üller, H. Bogge and U. Schimanski, Inorg. Chim. Acta, 1980, 45, L 249.
19 A. M üller, H. Bogge and U. Schimanski, Inorg. Chim. Acta, 1983, 69, 5 and refs. therein.
20 S. W. Du, N. Y. Zhu, P. C. Chen, X. T. Wu and J. X. Lu, J. Chem. Soc., D alton Trans., 1992, 339.
21 S. W. Du, N. Y. Zhu, P. C. Chen, X. T. Wu and J. X. Lu, Polyhedron, 1992, 11, 109.
22 J. C. H uffman, R . S. R oth and A . R . Siedle, J. A m. C hem. Soc., 1976, 98, 1310.
23 S. Guha, C. C. Frazier, P. L. Porter, K . K ang and S. E. Finberg, 0 pt. L ett., 1989, 14, 952.
24 W. J. Blau, H. J. Byrne, D. J. Cardin and A. P. Davey, J. M ater. C hem., 1991, 1, 245.
25 J. S. Shirk, J. R . Lindle, F. J. Bartoli, Z. H. K afafi and A . W. Snow, in M aterials for Nonlinear Optics, eds. S. R. M arder, J. E. Sohn and G. D. Stucky, A merican Chemical Society, Washington, 1992, p. 626.

26 Y. Wang and L. T. Cheng, J. P hys. Chem., 1992, 96, 1530.
27 M. Sheik-Bahae, D. C. H utching, D. J. H agan and E. W. Van Stryland, Phys. Rev. Lett., 1991, 65, 96; R. DeSalvo, A. A . Said, D. J. H agan, E. W. Van Stryland and M. Sheik-Bahae, IE E E J. Quantum Electron., 1996, 32, 1324

R eceived 4th D ecember 1996; Paper 6/08190H

[^0]: \dagger Non-SI unit employed: eV $\approx 1.60 \times 10^{-19} \mathrm{~J}$.

